News

The annual Faculty and Staff Honors Luncheon took place Friday, April 26.
Trammell Crow Company delivers first phase of Georgia Tech district devoted to advancing sciences that improve the human condition
Board of Regents' Distinctions honor the recipients for their outstanding contributions and excellence.
The Center for Teaching and Learning recently hosted an annual ceremony to honor Teaching Assistants (TAs) at Georgia Tech, celebrating excellence in teaching throughout the Institute and acknowledging the invaluable role TAs and future faculty play.

Events

Experts in the news

Heterotrophic activity, primarily driven by sulfate-reducing prokaryotes, has traditionally been linked to nitrogen fixation in the root zone of coastal marine plants, leaving the role of chemolithoautotrophy in this process unexplored. The researchers show that sulfur oxidation coupled to nitrogen fixation is a previously overlooked process providing nitrogen to coastal marine macrophytes. In their study, they recovered 239 metagenome-assembled genomes from a salt marsh dominated by the foundation plant Spartina alterniflora, including diazotrophic sulfate-reducing and sulfur-oxidizing bacteria. Based on the findings, the researchers propose that the symbiosis between S. alterniflora and sulfur-oxidizing bacteria is key to ecosystem functioning of coastal salt marshes. The study's co-authors include School of Biological Sciences researchers: Jose Louis Rolando, Maxim Kolton, Tianze Song, Roth Conrad, Y. Liu, P. Pinamang, Professor and Associate Chair of Research Joel Kostka, and Professor Kostas Konstantinidis. (Konstantinidis is also professor in the School of Civil and Environmental Engineering.)

Nature Communications

A group of researchers at the Georgia Institute of Technology have created the world’s first functional semiconductor made from graphene, a development that could lead to advanced electronic devices and quantum computing applications. Seen as the building block of electronic devices, semiconductors are essential for communications, computing, healthcare, military systems, transportation and countless other applications. Semiconductors are typically made from silicon, but this material is reaching its limit in the face of increasingly faster computing and smaller electronic devices, according to the Georgia Tech research team who published their findings in Nature earlier this year. In a drive to find a viable alternative to silicon, Walter de Heer, Regents' Professor in the School of Physics, led a team of researchers based in Atlanta, Georgia and Tianjin, China to produce a graphene semiconductor that is compatible with microelectronics processing methods.

Gas World

Robotics engineers have worked for decades, using substantial funding, to create robots that can walk or run with the ease of animals. Despite these efforts, today’s robots still cannot match the natural abilities of many animals in terms of endurance, agility, and robustness. Seeking to understand and quantify this disparity, an interdisciplinary team of scientists and engineers from top research institutions, including Dunn Family Associate Professor at the School of Physics and the School of Biological Sciences Simon Sponberg, conducted a comprehensive study to compare various aspects of robotic systems designed for running with their biological counterparts. (This also appeared at SciTechDaily.)

Earth.com